
Abstract

In this paper, we report on recent extensions to a surface
matching algorithm based on local 3-D signatures. This
algorithm was previously shown to be effective in view
registration of general surfaces and in object recogni-
tion from 3-D model data bases. We describe extensions
to the basic matching algorithm which will enable it to
address several challenging, and often overlooked,
problems encountered with real data.

First, we describe extensions that allow us to deal with
data sets with large variations in resolution and with
large data sets for which computational efficiency is a
major issue. The applicability of the enhanced matching
algorithm is illustrated by an example application: the
construction of large terrain maps and the construction
of accurate 3-D models from unregistered views.

Second, we describe extensions that facilitate the use of
3-D object recognition in cases in which the scene con-
tains a large amount of clutter (e.g., the object occupies
1% of the scene) and in which the scene presents a high
degree of confusion (e.g., the model shape is close to
other shapes in the scene.) Those last two extensions
involve learning recognition strategies from the descrip-
tion of the model and from the performance of the recog-
nition algorithm using Bayesian and memory-based
learning techniques, respectively.

1. Introduction

In 3-D object recognition and 3-D view registration,
shape representations are used to collate the information
conveyed by sensed surface points so that surfaces can
be matched efficiently. For object recognition, any shape
representation used in realistic settings must represent
general shapes, be robust to clutter and occlusion, and
be efficient.

Satisfying those requirements is notoriously difficult.
Many approaches have been proposed in the past (e.g.,
[1][9][24][25], as a small sample); for each of them
results are presented in controlled data, leaving many of
the challenges faced in practical applications of those
techniques unanswered. For example, many matching
techniques cannot be scaled to very large data without
combinatorial explosion; similarly, many matching
techniques cannot handle scenes with large degree of
clutter.

In this paper, we attempt to address some of the chal-
lenges met in practical applications through recent
extensions and example applications of our approach to
surface matching. Through those extensions and results,

we will show that the matching technique can not only
handle the standard controlled settings for recognition
and view registration, but can also handle much more
challenging cases such as data sets with large resolution
variation, efficient processing of large data sets, clutter
rejection for recognition in large scenes, and recognition
in scenes with a high-level of confusion.

Let us first briefly recall our basic approach to surface
matching. A. Johnson proposed in [13][14] an approach
based on the computation of local surface signatures
called spin-images. The signature of a given basis point
P1 is computed by every projecting pointM in a support
region centered atP onto a two-dimensional coordinate
system defined by the distance ofM to the tangent
plane,β, and its distance to the normal line,α. By histo-
gramming the values ofα andβ computed in the sup-
port region, we obtain a two-dimensional image which
is used as the signature atP. Those signatures can be
shown to be invariant to rigid transformations, resistant
to occlusion and clutter, and easily computable from 3-
D data sets with minimal requirements on the underly-
ing shapes and the connectivity of the surfaces. In the
rest of the paper, we will use the expressions “surface
signatures” and “spin images” interchangeably.

Matching two surfaces (from two views, or from a
model object and an observed surface) proceeds by first
finding points on the two surface with similar signatures
and by extracting a set of geometrically consistent
matches from those initial matches. The similarity
between signatures is computed from the correlation
between the signatures. It can be shown that the signa-
tures are discriminating enough to find a good set of ini-
tial matches, even with a high degree of clutter. Analysis
and results for the basic signature-based matching algo-
rithms for view registration and object recognition can
be found in [18] and [17], respectively. Applications to
industrial object recognition and to indoor mapping are
reported in [16] and [4]. Those results show that the
approach matching of general surfaces without segmen-
tation or feature extraction, and without any prior
knowledge of pose information.

Based on those initial results, we have explored ways to
enhance the algorithm to make it more better suited to
practical applications. First, because the signature com-
putation works directly on point sets, it is potentially
sensitive to variation in data resolution. For example, if
the distribution of points varies differently on one sur-

1. An oriented point is specified by a 3-D location
and an orientation and typically corresponds to a
surface point and its normal.
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face than on the other, the signatures may be substan-
tially different. Our initial technique addressed this
problem by resampling the data. We described a more
principled and effective approach in Section 2.1.

A second issue is the cost of computing the signatures.
In particular, because the signature is computed in a
support region around each basis point, it is critical to be
able to visit the points in this support region without vis-
iting the entire data set, a critical issue in the case of
large data sets. We show in Section 2.2.how the signa-
tures can be computed efficiently using standard geo-
metric data structures.

We show an example of application of those surface
matching techniques to the problem ofterrain map con-
struction (Section 2.3.) which involves the registration
of large terrain maps from airborne or ground range sen-
sors. Through this example, we show that the surface
matching techniques can tolerate large variation of data
resolution, that they can operate with the very large data
sets that are typical of 100m+ terrain maps, and that they
can deal with unstructured terrain. In this example, we
address the worst case in which no prior knowledge on
the relative poses between maps is known in advance.

The last set of extensions is in the context ofobject rec-
ognition. While the basic performance of object recog-
nition from model databases is reported extensively in
[17], we concentrate here on two cases in which object
recognition becomes particularly challenging. First, we
consider the cases in which the scene size is very large
compared to the model size. This occurs, for example, if
the task involves finding a single object in a large room
environment. In that case, the problem becomes one of
fast clutter rejection in order to avoid unacceptable com-
putational burden. We describe in Section 3.1. an
approach called3-D shape cueingfor fast filtering of
clutter points and show preliminary results1.

The second situation to which we pay particular atten-
tion is the case in which the model shape is very similar
to the shape of other objects in the scene. In that situa-

tion, the fundamental problem is to automatically mod-
ify the model, or the parameters of the recognition
algorithm, such that the parts of the model that are most
discriminating to the other objects are used in priority.
We propose alearning techniquefor enhancing the per-
formance of the object recognition algorithm and show
preliminary results in Section 3.2. Interestingly, stan-
dard learning techniques can be used in this case
because we use image-like signatures rather than struc-
tural descriptors. Such use of learning techniques in 3-D
recognition is a new a promising direction of research.

2. Surface Matching with Large Data Sets

2.1. Variable Data Resolution

In the representation described thus far, the signature
images are computed by histogramming the vertices of
the model or scene meshes. As a result, the distribution
of the vertices on the mesh directly affects the spin-
images. In fact, two meshes with different vertex distri-
butions may generate very different signatures at the
same basis point. Therefore, in order for the surface
matching algorithm to work properly, some constraint
has to be enforced on the distribution of vertices on the
meshes. Specifically, it can be shown that the spin-
images remain stable as long as the vertices are uni-
formly distributed on the surface. In all the results pre-
sented thus far, a decimation algorithm was applied to
all the meshes prior to matching in order to enforce this
uniformity constraint. The decimation algorithm is
described in detail in [15].

Although this approach works well in practice, it has
several problems. First of all, there are cases in which
the data simply cannot be made uniform without loosing
a great deal information because the variation of resolu-
tion in the input sensor data is too large. A typical exam-
ple is terrain data taken from a forward-looking sensor.
The sensor data varies from high-resolution at close
range to quadratically decreasing resolution as the range
from the sensor increases. Variations in data point spac-
ing of as much as 1:10 are routinely observed on terrain
data. The second problem is that the uniform decimation
requires on the same order of computation time as the
matching itself, even though much faster decimation and
filtering algorithms do exist [11]. Finally, as a guiding
principle of this work, we attempt to make the matching
algorithm as general as possible. In that respect, using
arbitrary mesh distributions is critical.

The solution to those problems is to compute the signa-
tures by integrating over the entire surface rather than by
computingα and β values at the vertices only. Essen-
tially, this requires interpolating the spin-image values
“in between” the mesh vertices. The simplest way of
achieving this is to raster scan each triangle of the mesh
(Figure 2) and to compute the (α,β) coordinates of each
point inside the face. The corresponding spin-image
entry is incremented by a constant amount for each new
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Figure 1.The signature at pointp is computed by recording
the distance of all nearby pointsx from the surface normal
n (α) and the distance fromx to p along n (β).
Corresponding points from different views have similar
signatures.

1. This topic is included for completeness and to serve has an
introduction to the topic of learning for 3-D shape recognition.
Therefore, we limit ourselves to a summary of the key results
in that section. Additional results on cueing are reported in [5].



point. This algorithm can be made efficient by using a
fast geometric test in order to determine whether a face
is inside the region of influence of the basis point and is
within the boundary of the spin-image space.

This approach is still an approximation because it uses a
discrete sampling of the surface. In particular, although
the signatures are less sensitive to the distribution of
vertices, they are still sensitive to the choice of the sam-
pling rate used for interpolation.

The second approach is exact in that it computes the
spin-images by integration over the whole surface with-
out additional sampling. In this approach, the boundary
of each triangle is mapped intoαβ-space, as shown in
Figure 3 (a). Each edge of the face maps to a segment of
hyperbola. The hyperbolic segments computed in the
projection are then used for determining which cells of
the spin-image may contain some portion of the triangle.
Figure 3 (b) shows the portion of the spin-image that
contains a portion of the triangle based on the segments
of Figure 3 (a). Finally, each cell in the spin-image is
incremented by the area of the part of the triangular face
that is mapped to that cell inαβ-space.

Figure 3. Continuous interpolation: each face is mapped
to αβ space by mapping its edges (a); cells inside the
mapped region are incremented by the area of the
intersection of the face and the volume in space

corresponding to the cell (b).

This last step is illustrated geometrically in Figure 3
(b). The region of 3D corresponding to the cell (α,β) is
an annulus of height∆β and thickness∆α. The cell is
incremented by the surface area of the intersection
between the triangle and this annulus.

Because it uses the actual surface area for incrementing
the spin-image cells, this algorithm computes an “exact”
mapping of the surface to the signatures, given a mesh
discretization of the surface. A systematic comparison
of the discrete and continuous approaches remains to be
done, but the benefits of interpolation over vertex map-
ping have been demonstrated. Figure 4 shows two
meshes of an object at two different resolutions and dif-
ferent point distributions. Given a basis point, the region
of influence of which is shown on the mesh, the signa-
tures computed from the only vertices are quite different
as expected. However, the signatures computed using
interpolation are similar.

Figure 4. Comparison of the signatures at a basis point
computed at different resolutions using the vertex and
interpolation methods.

How much more similar are the signatures computed
using interpolation? A partial answer to that question is
shown in Figure 6. An object (a faucet) was discretized
at three different resolutions, denoted byr1, r2, andr3
using the algorithm of [11], i.e., no attempt was made to
enforce uniformity of the point distribution. The number
of vertices on the three versions of the object is: 1585,
57, and 120, respectively. A set of points {pi} was
selected on the object independently of the discretiza-
tion and, for each basis point, the similarity of the signa-
turess(r, r’, pi) was computed using different pairs of
resolutionsr, r’ = r1, r2, andr3. The similarity is com-
puted using the formula introduced in [14] and is close
to zero for uncorrelated spin-images and has high values
for similar images. Figure 6. shows the histograms of
s(r1, r2, pi) ands(r1, r3, pi) using the vertex method and
the interpolation method. The histograms show a sub-
stantial improvement in the similarity of signatures. In
particular, most of the similarity valuess(r1, r3, pi) are
so low that such a difference in resolution makes match-
ing impractical. Using the interpolation method, how-

Figure 2. Discrete vertex interpolation: each face is
raster-scanned before mapping to spin-image. The
sample points used for the scanning are shown in green
in the neighborhood of the basis point shown in red.
The vertex-based signature for this point (top right) is
degraded when compared with the corresponding face-
based signature (bottom right).
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ever, increases the similarity values to a level suitable
for matching.

Figure 5. Test object for interpolation at three different
resolutions.

Figure 6. Histograms of similarity between meshes at
different resolutions with and without interpolation.

This experiment shows that, by performing integration
over the surface rather than resolution-dependent sam-
pling, the interpolation method permits the comparison
of surfaces at very different levels of resolution. The
examples of Figure 4 and Figure 6 were obtained from
controlled experiments; the question of the effectiveness
of surface interpolation in real applications will be
answered in the applications Section below.

2.2. Fast Access Data Structures

This part of the work addresses the practical use of the
matching techniques, in particular using the more
advanced surface integration, for the very large data sets
that one expects to encounter in applications such as
building terrain models, or virtual models of large inte-
rior environments.

The main potential obstacle to the practical use of signa-
ture techniques is that the computation of the signatures
may become prohibitively expensive if the data set is
very large. In particular, the amount of computation
needed from each face in order to compute the signature
at a given basis point is much more substantial than in
the standard method. Therefore, it becomes particularly
important that only the points that are inside the region
of influence of a basis point be used for computing the
corresponding signature. This amounts to designing a
data structure which enables fast access to selected
regions of the cloud of points representing the surface.
The standard approach to this type of problem is the use
of variants of the K-D tree structure designed for fast
access in multidimensional spaces. After evaluation of

several implementation of similar geometric data struc-
tures, the best design turned out to be a regular hierar-
chical data which is similar to octrees, except that,
because we are working with 2-D manifolds, the tree is
sparse and access can be efficiently implemented by a
fast hashing method. The graphs below illustrate the
improvement in signature computation speed obtained
using this technique.

Because of the overhead involved in computing the data
structure, and because of the overhead involved in com-
puting the hashing function and retrieving points from
the data structure, this technique is really beneficial only
for large data sets. In fact, the computation is slower for
data size of moderate size. The graphs show that the
crossover point is at approximately 8000 points
(Figure 7.) This technique should not be used for
smaller data sets.

Figure 7. Computation time as a function of the number
of points without indexing data structure (red), and with
indexing data structure (green).

2.3. Example Applications

In the previous sections, we demonstrated the perfor-
mance of the algorithms enhancements for variable res-
olution and large data sets on controlled test examples.
The question of the effectiveness of the approach in
practice still remains. An ideal for demonstrating the
algorithm is the problem of building large, high-resolu-
tion three-dimensional (3-D) representations of unstruc-
tured terrain using terrestrial range sensors1.

In this application, it is necessary to address the issues
of widely varying resolution, absence of reliable fea-
tures, and very large data sets. Furthermore, the data sets
are typically very large, thus demonstrating the use of
signature-based surface matching for large-scale prob-
lems.
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1. Terrestrial sensors operate over a range of meters to
hundreds of meters and are distinguished from object
modeling sensors, which operate in a range of millime-
ters to meters, and remote sensors, which operate at
kilometer range and higher. Terrestrial range sensors can
be ground-based or airborne.



In this applications, the map registration component
receives as input a pair of arbitrary polygonal surface
meshes, possibly containing holes and disconnected
patches, and outputs the 6-DOF rigid-body transform
that best aligns the two meshes. In order to fully exer-
cise the surface matching capabilities, we do not assume
any prior knowledge of the transformation between indi-
vidual maps. In a way, this is the testing the worst case
for the matching algorithm. Techniques for taking
advantage of prior knowledge of relative poses is
described in [4].

In our experiments, we create meshes from real range
data obtained from two sensors, one ground-based and
one aerial. The Ben Franklin 2 (BF2), a scanning laser
range finder mounted on Navlab 2 and Navlab 5, two of
Carnegie Mellon University’s (CMU’s) autonomous
ground vehicles, produces 360 degree by 30 degree
range and reflectance images in a radius of 52 meters
(Figure 8.)[12].

.

Figure 8. Example range (top) and reflectance (bottom)
images acquired with the BF2 laser range finder.

The BF2 was set to generate range and reflectance
images of size 6000 x 300, corresponding to angular res-
olutions of 0.06° and 0.1° in the horizontal and vertical
directions respectively. The initial data is subsampled by
a factor of 5 horizontally and 3 vertically and then con-
verted to a mesh.

Once a mesh is formed, it is simplified to a predeter-
mined number of faces using Garland’s simplification
algorithm [11]. A pair of simplified meshes is then pre-
sented to the registration engine. spin-images are gener-
ated for each point in one mesh and for a fixed
percentage of points in the other. The signatures are
computed using the discrete vertex interpolation tech-
nique described above in order to eliminate the effect of
resolution variation. Candidate correspondences are
found using the correlation-based similarity metric, and
the best correspondences are grouped based on geomet-
ric consistency. We then determine the rigid-body trans-
form that best aligns the correspondences from each
group. The candidate transforms are then verified and
ranked. We select the top match as our registration
result. Finally, we use high-resolution versions of the
surface meshes to refine our transform estimate using a
modified version of the ICP algorithm. After all pairs of
meshes in a sequence have been registered, they are
integrated into a single global map using a standard
voxel-based method.

Figure 10. shows an example of integrated map obtained
using the first data from the BF2 scanner. The environ-
ment is a slag heap near Pittsburgh. The map was cre-

ated by registering eleven individual maps obtained at 3
to 5 meters interval (the ground truth poses were not
used in the registration.)

In this example, the support region for computing the
spin image signature is 5mx5m. The initial data size is
1.8M points for the BF2 data, which is reduced to 15000
for matching. For that data, the variation of resolution
from near to far range is greater than 1:10 due to the
shallow incidence angle of the laser at long range.

In addition to ground-based data, the technique has been
applied to data from the CMU autonomous helicopter
[21], collected both from local sites and from the
Haughton crater in the Canadian Artic, with similar per-
formance. For reasons of space, the resulting images
cannot be included here, but sample results are available
at [26]. Those results show that the matching technique
performs well with large data sets and that it can tolerate
large variations in resolution. Two issues that are critical
to the practical application of surface matching.

3. Object Recognition in Large and
Confusing Scenes

3.1. Shape Cueing

A major obstacle to the use of 3-D recognition tech-
nique in realistic settings is that the object to be recog-
nized occupies typically a fairly small portion of the
scene data. For example, if one were to try to recognize
an object in a scan of an entire room, the size of the data
set actually measured on the object would only be a
small fraction of the total data size. For any recognition
algorithm, this situation translates into spending most of
the time examining clutter points. Many algorithms may
not even be able to work at all because of combinatorial
explosion. It is therefore critical that efficient ways of
reducing the clutter be designed.

In our case, points are randomly selected in the scene as
basis points for comparison with the basis points of the
model. An obvious enhancement to the matching algo-
rithm would be a mechanism by which a large percent-
age of the points in the scene could be filtered out. We
call this mechanism “cueing,” in that it suggests possible
areas of the scene where the object might be located.
The matching engine can confirm or reject points in the
suggested areas. We briefly describe below the approach
chosen to cueing.

The approach chosen here is to combine all the spin
images from the model into a combined model which
can be quickly compared with each signature image
from the scene. This approach is similar to the generali-
zation problems in machine learning. Specifically, the
method of naive Bayesian classification was chosen as a
means to determine which scene points have high proba-
bility of being on a model.



Figure 9. General approach to cueing: the complete set

of signatures on the model (shown on the left) is
summarized into a single classifier which is applied to
the signatures computed at the scene points.

Let Xi be the spin image associated with pointi in the
scene, and let denote the hypothesis that
scene pointi lies on objectA. Then by Bayes rule,

To find scene points which have the highest probability
of belonging to a model, we need to find the MAP
hypotheses ; that is, the pointi which maximize

. No data is known about the prior probabil-
ity that any particular pointi may be found on a model,
and no data is known a priori about the probability of a
particular spin image occurring, so uniform distribu-
tions and are assumed. This reduces
the problem to finding or the maxi-
mum-likelihood hypothesis of given over all
i’s. Because of the computational cost of evaluating the
actual joint probability distribution between the spin
image bins, we assume conditional independence
between the pixels inXi , using the standard “naive
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Figure 10. Top view of the integrated terrain map for the eleven data sets in the mesa sequence (center). The
numbered insets illustrate individual data sets, and two sets (1 and 11) are overlaid on the top-view. The larger insets
show various perspective views of the map, and the white arrows indicate the location and direction of the viewpoint.
Grid lines are two-meters apart on the combined map and one meter apart on the individual data sets.



learning” approximation [8]; that is, if denotes
the value of bin  inXi, then we assume

where is the probability that
for a given spin image will equal what it does given
that point i is on modelA. This assumption of condi-
tional independence of spin image pixels thus reduces
this method to naive Bayesian classification.

The distribution for is discretized into
bins, usually 10 or 20. During training, probabilities

are first estimated from the spin images
of scene points; for every model spin image , for
every pixel , is incremented, and
at the end, each is divided by the num-
ber of images that contributed to it. Then, at run time,
spin images are constructed for scene points, and the
above product estimating is found by look-
ing up for every pixel in the
scene spin image. Those scene spin images with maxi-
mum are considered most likely to be mem-
bers of a model.

This method of point classification was first tested on
simple controlled scenes in which the model object is
combined with other objects in scenes of increasing
complexity. Figure 11. shows such an example using an
elbow joint as the model. The points selected by the
classifier are shown as dots overlaid on the data. Most of
the points are correctly selected on the object in this
example, even though the scene contains several other
objects. The performance of the classifier is evaluated
by taking the ratio of the percentage of points correctly
classified by the classifier to the percentage of the scene
that really consisted of model points. Formally, ifNm is
the number of model points in the scene according to
ground truth,Nc is the number of clutter points in the
scene,N’m is the number of scene points that were clas-
sified as model points and actually were points on the
model, andN’c is the number of scene points classified
as model points, but were really points lying somewhere
on the clutter, then we define the performance of the
classifier by the ratior = ρ’/ρ, whereρ’ = N’m/(N’c +
N’m) andρ = Nm/(Nc + Nm). A large value forr indicates
a reduction in the number of points that are considered
for matching. If the filtering were perfect, all the points
would lie on the model, therefore,r = 1/ρ is the maxi-
mum value ofr.

This approach is particularly attractive for scenes in
which the object model occupies a small fraction of the
scene. We have tested the algorithms on scenes with up
to 99% clutter. The results are summarized in Figure 12.
in which the ratio of selected points r is plotted against
the ratio of model size vs. scene size,ρ. The results
show that the classifier performed better than random
selection (ρ = 1) in all cases, and often close to the opti-
mal (r = 1/ρ.) Obviously, the performance of the classi-
fier degrades in scenes containing multiple instances of
very similar surfaces. However, it never makes the ini-
tial random selection worse, i.e.,ρ’ is always greater
thanρ.

Figure 11. 3-D cueing examples: the points retained as
part of the U-joint with high probability are shown as
dots overlaid on the surfaces.

Figure 12.Cueing performance.

3.2. Learning for Clutter Rejection and
Model Discrimination

Another obstacle to good performance of object recog-
nition in practice is the fact that many surfaces in the
scene may be similar to large portion of the model, thus
leading to high degree of confusion in the scene. Unless
extremely careful parameter adjustments are applied, a
recognition program would typically be confused
because it has no way a-priori to know that some part of
the model can be easily confused with parts of the scene.
This issue is often overlooked in two ways. First, exam-
ple scenes are often selected so that the model is not
very similar to objects in the background. Second, the
recognition program may be manually tuned so that the
model can still be discriminated reliably.

The fundamental issue is that the parts of the data that
can lead to confusion must be given a lower weight in
the matching. The problem is that this extremely diffi-
cult to do manually, and it is next to impossible to do
automatically in the absence of any example of “confus-
ing” scenes.

The alternative is to use a set of typical confusing scenes
to automatically train the recognition algorithm so that,
once it is trained, it is able to discard from future scenes
the potentially confusing parts. More precisely, given a
sceneS= {pi} and a model M, we want to assign to each
point pi a weightwi which represent the degree to which
this point may be useful for matching. The policy by
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which thewi’s are assigned is learned from the perfor-
mance of the recognition algorithms on prior example
scenesSj.

This approach is actually a generalization of the
approach taken for the 3-D cueing. In cueing, we have
“learned” from the distribution of signatures on the
model a policy by which we assign a weight to points in
the scene reflecting their likelihood of belonging to the
model. In the present case, we assign weights based on
past performance of the recognition algorithm.

Because it is difficult to derive a probability distribu-
tions in signature space in general, we use a memory-
based learning approach to the training phase. Letpi

j be
point i of scenej of the training set andsi

j be its signa-
ture. We divide the set of points in the training scenes
into those that are correctly matched to points on the
models, the set of which is denoted by+ for “positive
examples”, and those that are incorrectly matched, the
set of which is denoted by- for “negative examples”.
The - set is essentially the set of scene signatures that
can be easily confused with signatures on the model.

After collecting the+ and- sets,wi is computed for a
new pointpi, from a new test scene, with signature si by
retrieving the signatures from+ and- that are closest to
si, the sets of which are denoted byV+(si) and V-(si),
respectively. The weight is then computed by:

        wi = Σ 1/d(s,si)  - Σ 1/d(s,si)
             sin V+(si) s in V-(si)

In this formula,d is the distance in signature space. The
weights are normalized to compensate for the variability
in the density of examples in the signature space. Intu-
itively, this formula says that signatures that have been
found to be confusing in the past are given a low weight.
Point with low weight are then discarded when compar-
ing the signatures for recognition. If one were to try to
do manual adjustment of the parameters of the matching
algorithm, one would follow essentially the same steps:
identify those pieces of surfaces that are confusing and
set the appropriate threshold to discard them. The learn-
ing algorithm does this automatically.

Figure 13. Example objects for learning from
recognition examples.

A B C D

Figure 14.Enhancement of recognition performance in confusing scenes through learning (see text.)
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An example illustrating the learning concept is shown in
Figure 13. and Figure 14. Figure 13. shows the pictures
of several objects labeled A to D. Object A is used as the
reference model against which the scene points are
matched, the other objects are placed in the scene at ran-
dom positions. The objects B to D are purposefully cho-
sen to be similar so as to create a large degree of
confusion in the scene. In fact, A and B have mostly the
same shape (two bunnies!) except for a few areas (the
ears and the front paws area.) Many of the surface on C
and D are also similar to large portion of A. In such an
extreme case, it would be near impossible to tweak a
recognition algorithm in order to reliably discriminate
between the two objects.

Figure 14. shows a sequence of scenes, each of which
contains one instance of the model and copies of the
other objects in random orientation. The scenes are
labelled 1 to 4 in order in which they are fed to the algo-
rithm. Starting with no information, i.e., using the
default matching parameters, the recognition gets con-
fused on scene 1 and returns wrong matches. The model
is displayed in wireframe in the poses found by the rec-
ognition program and overlaid on the scene data dis-
played using shaded surfaces.

Note that, in order to have a fair comparison, a fixed
threshold on recognition is used so that multiple recog-
nized instances may be reported. Furthermore, no fur-
ther verification is applied to the reported matches. This
correctly simulates the situation in which the recogni-
tion program starts in a default configuration which is
updated after training.

After placing the data from scene 1 in the training set,
the recognition algorithm is exercised on scene 2, a new
scene. The algorithm still performs poorly because the
training data has not reduced the confusion level suffi-
ciently. The performance improves when two images are
used for training as shown on the result of image 3. In
particular, bunny A is still confused with B. After three
scenes are included in the training set, the algorithm
converges to a good policy for selecting the weights and
the recognition is perfect as shown by the result on a
new test scene, number 4.

There are several technical difficulties in implementing
this approach. Most importantly, we are working in sig-
nature space which may be of prohibitively large dimen-
sionality. For example, the typical signatures used in this
paper are 30x30 which would force us to index in a 900-
dimensional space! This problem is addressed by first
projecting the signatures onto a lower-dimensional
space spanned by the principal components of the signa-
tures. This technique, described in [17], was originally
designed for recognition of large library of objects and
was shown to be effective at compressing the signature
by taking advantage of the redundant information in the
signatures of a given object. The results shown in Figure
14. were obtained by projecting on the seven most sig-
nificant signature components. For those models, the
seven directions provides model reconstruction with
80% accuracy. A reconstruction of 99% can be achieved
with 27 components. The performance of the learning
algorithm are similar in that case.

The second difficulty is to retrieveV+ andV- in an effi-
cient manner. We typically limit the size of theVs to the
k nearest neighbors (k = 5 in the example shown here),
which reduces the problem to finding the k-nearest
neighbor problem. This problem has been extensively
studied in the field of memory-based learning and we
are using the standard data structures for efficient data
access in memory-based learning. A related problem,
also typical of memory-based learning, is the issue of
data accumulation. Unlike other learning schemes,
memory-based learning keeps accumulating the training
data, which may lead to unacceptable performance
when the training set becomes very large. The solution
is to collapse similar observations, i.e. similar signatures
si

j from the training set into single observations.

4. Conclusion

We have presented enhancements to a generic 3-D sur-
face matching algorithms which directly address the
issues of large data sets and confusing scenes. Those
issues which are not normally addressed are critical
applying 3-D recognition techniques in practice. In the
area of large data sets, we need to identify the limita-
tions of the algorithms. The example on terrain maps
shows that it is possible to perform matching of large
data sets. The limit beyond which matching is no longer
practical needs to be determined. In the area of “confus-
ing scenes”, the use of learning techniques for dynamic
improvement of recognition performance is an exciting
area of investigation. In particular, it may be practical to
use those techniques for adaptation of a recognition
algorithm to different applications, i.e., to different
classes of scenes.
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